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ABSTRACT

Range and velocity sensors based on lidar or radar with multiple beams are often
used to measure the altitude and velocity, respectively, of a spacecraft above a target
body. A difficulty that arises when navigating about small bodies such as asteroids or
comets, is that the notion of altitude is largely obscured by the irregular shape of the
target surface. This paper develops a method to incorporate the multibeam altimeter
and Doppler velocimeter measurements into the on-board spacecraft state estimator
by using information from a faceted shape model representation of the target body
surface. The faceted shape model representation is very general and does not place
any restriction on the surface complexity. This allows the estimation method to be
applicable to a broad class of irregularly shaped target bodies.

1 INTRODUCTION

Spacecraft exploration over the last decade has been expanding in many new directions. One
important direction is the exploration of small bodies such as asteroids and comets. Recent
missions include the Deep Space 1 mission that flew-by the comet Borrelly [5], the Near Earth
Asteroid Rendezvous (NEAR) mission that orbited and eventually landed on the asteroid
Eros [13], the 2004 Stardust mission that flew through the tail of comet Wild 2 [4], and
the Deep Impact mission that drove an impactor at high velocity into comet Temple 1 [11].
Challenging on-going missions include the Japanese Hayabusa mission (formerly MUSES-C)
launched in 2003 that touched down two times on asteroid Itokawa and is bringing a sample
back to Earth [12], and the European Rosetta mission [10] launched in 2004 and scheduled
to orbit and land on comet 67P/Churyumov-Gerasimenko in 2014.

Altimeters and velocimeters are important sensors for supporting navigation about small
bodies. A difficulty that often arises when trying to use altimeters or velocimeters for small
body navigation is that the notion of altitude is obscured by the irregular shape of the body
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(cf., Figure 1.1). This report overcomes this difficulty by making use of a faceted shape
model, possibly high-order, to represent the intricate shape of the target body. The use
of faceted shape models to represent complex 3-dimensional objects is very common in the
computer graphics community and has become a dominant paradigm in the movie and video
game industries. Likewise, facet models are a natural choice for supporting an on-board state
estimator that requires an accurate internal representation of the target body’s shape. An
approach is developed in this paper to systematically incorporate the multibeam altimeter
and/or velocimeter measurement into the state estimator by making use of information from
a faceted shape model. The approach makes use of Hesse’s normal form to represent the
shape model’s planar facets. This particular representation is motivated by an approach
taken in an earlier study [6]. The data structure developed is called the Range Measurement
Table (RMT) for the altimeter measurement, and the Velocity Measurement Table (VMT) for
the velocimeter measurement. The resulting measurement updates based on the RMT and
VMT data types lead to spacecraft estimation solutions for very general classes of irregularly-
shaped target bodies. All results in this paper have been taken from a series of JPL reports
[1][3][6].

Figure 1.1: Spacecraft navigation about a small body is aided by altimetry and velocimetry
measurements taken relative to an irregularly-shaped target body.

2



2 BACKGROUND

2.1 Frames and Vectors

The main frames and vectors in the small body problem are depicted in Figure 2.1. For
simplicity, only one altimeter beam and one facet are shown. However, treatment will be
generalized later to multiple beams and multiple facets.

Figure 2.1: Frames and vectors used in the small body problem.

Let all vectors with under-arrows (e.g., x−→), be coordinate free. The beam index i will be
dropped for the time being, and we will consider a generic beam. Consistent with Figure 2.1,
it will be convenient to define the following frames and coordinate free quantities associated
with a generic beam intersecting a generic facet of the small body model.

FI - Inertial Frame, located at Solar System CM (center-of-mass)

FT - Target Body Frame, located at Target Body CM

Fsc - Spacecraft Body Frame, located at S/C CM

r−→ - Position vector from beam origin on Spacecraft to beam intersection point on Target

Body facet (coordinate-free)

f
−→

- Position vector from Target Body CM to beam intersection point on Target Body facet

(coordinate-free)
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c−→ - Position vector from Spacecraft CM to beam origin (coordinate-free)

d−→ - Unit vector direction of beam (coordinate-free)

n−→ - Unit normal vector associated with Target Body facet that the beam intersects (coordinate-

free)

2.2 Facet Plane Geometry

The geometry of a facet plane is shown in Figure 2.2. Consider any two vectors �−→1 and �−→2

that start at the Target Body CM and have their heads lying on the facet plane. Then one
can write,

ε−→ = �−→2 − �−→1 (2.1)

where the vector ε−→ lies in the facet plane. Accordingly, ε−→ must be perpendicular to the
facet normal n−→,

n−→ · ε−→ = 0 (2.2)

Figure 2.2: Geometry of a facet plane.

Substituting (2.1) into (2.2) and rearranging yields,

n−→ · �−→2 = n−→ · �−→1 (2.3)

We can conclude that the inner product of the facet normal n−→ with any vector �−→ starting at
the Target Body CM and having its head on the facet plane gives the same constant value.
This constant is important and will be denoted as the facet constant κ. Each facet will have
its own value of κ. For a given facet,

n−→ · �−→ = κ (2.4)
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where �−→ is any vector starting at the Target Body CM and having its head on the facet

plane. Choosing �−→ = α n−→ (i.e., the vector perpendicular to the facet plane with length α),

in (2.4) gives,
κ = α

(
n−→ · n−→

)
= α (2.5)

Hence κ can be interpreted physically as the perpendicular distance (i.e., the minimal dis-
tance), from the Target Body CM to the facet plane. The use of relation (2.4) in the current
report is motivated by the treatment given in [6], and will be important for later derivations.

REMARK 2.1 If values for n−→ and κ are specified, equation (2.4) can be used as a definition
of the facet plane. This particular definition of a plane is known in tensor analysis as Hesse’s
normal form [15].

3 RANGE MEASUREMENT TABLE (RMT)

The Range Measurement Table (RMT) is a table of measured ranges along known beam
directions. The format of the RMT is shown in Table 3.1, where each row of the RMT
corresponds to a range measurement along a different beam direction. There are m rows
corresponding to at most m possible beams. While the actual number of beams is not
limited, 3 or 4 beams are typical. The first column is the row index, and the second column
is a number from 0 to 1 representing the confidence in the measurement. For the present,
these confidences are taken as either 0 or 1, indicating a complete rejection or acceptance of
the measurement, respectively. The quantity y corresponds to the scalar range measurement
from the i’th beam, and σ is its associated 1-sigma error value. Currently, noises on each
beam are assumed to be statistically independent. The quantity n is the unit normal of the
facet associated with the i’th beam’s intercept point on the Target Body surface, and κ is
its associated facet constant. Typically, the intersection point of the altimeter beam with
the shape model is not known exactly, and must be estimated based on the current state
estimate. A procedure for doing this is given in [7]. The quantity d represents the unit vector
direction of the i’th beam, and c represents the offset vector from the spacecraft CM to the
i’th beam origin.

Range Measurement Table (RMT)
# Conf y = σ n

T = κ dT = cT =
|r| [nx,ny,nz] [dx, dy, dz] [cx, cy, cz]

1
2
...

Table 3.1: Range Measurement Table (RMT) specifying range along known beam directions
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From the geometry shown in Figure 2.1,

f
−→

= ρ
−→

+ c−→ + r−→ (3.1)

Since the head of vector f lies on the facet plane, it satisfies Hesse’s normal form (2.4),

n−→ · f
−→

= κ (3.2)

Substituting (3.1) into (3.2) gives,

n−→ · ( ρ
−→

+ c−→ + r) = κ (3.3)

This implies,
n−→ · ( ρ

−→
+ c−→ + |r| d−→) = κ (3.4)

or equivalently,
|r|( n−→ · d−→) = κ − n−→ · ρ

−→
− n−→ · c−→ (3.5)

where r−→ = |r| d−→. Solving for the range |r| in (3.5) gives,

|r| =
κ − n−→ · ρ

−→
− n−→ · c−→

n−→ · d−→
(3.6)

The condition n−→ · d−→ = 0 is not expected to occur in practice since it corresponds to the
beam direction being perpendicular to the facet normal. This condition can be tested in-flight
before applying the measurement update.

Now the variables ci, di, fi, ri,ni are specialized to be associated with the i’th beam and
the following choices are made for their coordinate frames,

fi,ni ∈ Target Body frame FT (3.7)

ri, ci, di ∈ S/C body frame Fsc (3.8)

ρ ∈ Inertial frame FI (3.9)

κi - Scalar facet constant associated with Target Body facet that i’th beam intersects

ri - Position vector from i’th beam origin to its intersection point on Target Body facet,
resolved in Inertial FI

fi - Position vector from Target Body CM to i’th beam intersection point on Target Body,
resolved in FT

ci - Position vector from Spacecraft CM to i’th beam origin, resolved in Fsc
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di - Unit vector direction of i’th beam, resolved in Fsc

ni - Unit normal direction vector of facet that i’th beam intersects, resolved in FT

ρ - Position vector from Target Body CM to Spacecraft CM, resolved in FI

A - 3 × 3 Spacecraft attitude as direction-cosine matrix

T - 3 × 3 Target Body attitude as direction-cosine matrix

The inner products in (3.6) can be calculated as,

n−→ · ρ
−→

= n
T
i (Tρ) = n

T
i Tρ (3.10)

n−→ · c−→ = (AT T
ni)

T ci = n
T
i TAT ci (3.11)

n−→ · d−→ = (AT T
ni)

T di = n
T
i TAT di (3.12)

where the inner product (3.10) has been computed in FT and the inner products (3.11) and
(3.12) have been computed in Fs/c. Substituting inner product expressions (3.10)-(3.12) into
(3.6) gives the range associated with the i’th beam as,

|ri| =
κi − n

T
i Tρ − n

T
i TAT ci

n
T
i TAT di

(3.13)

=
κi − n

T
i TAT ci

γi
−

n
T
i Tρ

γi
(3.14)

where γi
Δ
= n

T
i TAT di.

Define the noisy range measurement associated with the i’th beam as,

yri = |ri| + ni (3.15)

Cov[ni] = σ2
i (3.16)

where the noise ni is assumed to be white and independent from beam to beam. Rearranging
(3.15) gives |ri| = yri − ni which can be substituted into (3.14) to give,

yri − ni =
κi − n

T
i TAT ci

γi

−
n

T
i Tρ

γi

(3.17)

Rearranging (3.17) gives,

yri +
n

T
i TAT ci − κi

γi
= −

n
T
i T

γi
ρ + ni (3.18)
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With a change of notation, this becomes,

yi = hT
i ρ + ni (3.19)

where,

yi
Δ
= yri +

n
T
i TAT ci − κi

γi

; hT
i

Δ
= −

n
T
i T

γi

(3.20)

Equation (3.20) is now noise-normalized to become,

yi

σi
=

hT
i

σi
ρ +

ni

σi
(3.21)

or equivalently,
ỹi = h̃T

i ρ + ñi (3.22)

where,

ỹi
Δ
=

yi

σi
; h̃T

i
Δ
=

hT
i

σi
; Cov[ñi] = 1 (3.23)

Consider m beams, i = 1, ..., m associated with a particular RMT update. Stacking the
normalized measurement (3.23) for each beam gives the stacked measurement equation,

Ystack = Hstack ρ + nstack (3.24)

where,

Ystack =

⎡
⎢⎣ ỹ1

...
ỹm

⎤
⎥⎦ ; Hstack =

⎡
⎢⎣ h̃T

1

...

h̃T
m

⎤
⎥⎦ (3.25)

nstack =

⎡
⎢⎣ ñ1

...
ñm

⎤
⎥⎦ ; Cov[nstack] = I (3.26)

For m ≤ 3 equation (3.24) will be applied directly as the measurement update to the Kalman
filter. This will require the in-flight inversion of at most a 3 × 3 matrix. For m ≥ 4 a pre-
processing step based on QR factorization will be applied.

The pre-processing step uses a QR factorization to improve numerical robustness, and
also to ensure that only a 3 × 3 matrix needs to be inverted by the Kalman filter, even if
there are 4 or more beams. Specifically, a QR decomposition of Hstack is taken of the form
[9],

Hstack = QR = [Q1, Q2]

[
R11

0

]
= Q1R11 (3.27)

where R11 ∈ R3×3. Multiplying (3.24) on the left by QT and using (3.27) gives the equivalent
measurement equation,

QT Ystack =

[
R11

0

]
ρ + QT nstack (3.28)
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A key observation is that all but the top 3 equations of (3.28) are pure noise and can be
removed from consideration. Keeping only the top 3 equations of (3.28) gives,

y3 = R11 ρ + n3 (3.29)

where,
y3 = QT

1 Ystack; n3 = QT
1 nstack (3.30)

R3 = Cov[n3] = I (3.31)

The algorithm checks the size of the diagonal elements of the rows of R11 (an upper
triangular matrix) to see whether 1, 2, or 3 of the measurements in (3.29) should be applied
for KF updating. The measurements can then be applied as scalar updates, or in a single
update (requiring the KF to invert at most a 3 × 3 matrix).

At this point, the measurement equation (3.29) is in the form of a linear function of the
relative position ρ, and can be directly incorporated into any Kalman filter mechanization
that contains ρ as part of its state vector (cf., [1][2]). A simple small body state estimator is
considered later in this paper where the state is defined as,

x =

[
ρ
ρ̇

]
(3.32)

and ρ̇ denotes the relative velocity with respect to an inertial frame. Using the full state
definition (3.32) one can write ρ as,

ρ = [I, 0]x (3.33)

Substituting (3.33) into (3.29) gives the final measurement equation of the form,

yrmt = Hrmtx + nrmt (3.34)

where,
Hrmt = [R11, 0] (3.35)

It is worth noting that we have postponed this last step to restrict the number of columns of
Hstack to only 3. This minimizes the computational load associated with the QR factorization
of Hstack in (3.27), which is proportional to the number of its columns squared. Specifically,
the QR factorization of Hstack requires approximately 1

2
mn2 flops (cf., [14]), where m is the

number of beams, and n = 3 is the number of columns.

The measurement equation (3.34) for facet-based altimetry has been used with the Kalman
filter developed in [1][2] for studying space exploration of small bodies.
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4 VELOCITY MEASUREMENT TABLE (VMT)

The Velocimeter Table (VMT) is a table of measured inertial velocities along known Doppler
radar beam directions. The format of the VMT is shown in Table 4.2, where each row of the
VMT corresponds to a velocity measurement along a different beam direction. There are m
rows corresponding to at most m possible beams. While the actual number of beams is not
limited, 3 or 4 beams are typical. The first column is the row index, and the second column is
a number from 0 to 1 representing the confidence in the measurement. For the present, these
confidences are taken as either 0 or 1, indicating a complete rejection or acceptance of the
measurement, respectively. The quantity y corresponds to the Doppler velocity measurement
from the i’th beam, and σ is its associated 1-sigma error value. Currently, noises on each
beam are assumed independent. The quantity f is the location of the beam’s intercept point
on the surface of the target body, and Cov[f − ftrue] is its associated covariance. Typically,
the intersection point f is not known exactly, and must be estimated using a shape model,
and the current state estimate. The quantity c represents the offset from the spacecraft CM
to the sensor origin, and d represents the unit vector direction of the beam.

Velocimeter Table (VMT)
# Conf y = σ fT = Cov[f − ftrue] = dT cT

dT ṙ [fx, fy, fz] [Pxx, Pxy, Pxz‖Pyy, Pyz‖Pzz]

1
2
...

Table 4.2: Velocimeter Table (VMT) specifying velocity along known directions

Let all vectors with under-arrows (e.g., x−→), be coordinate free. The beam index i will also
be dropped for the time being, and we will consider a generic beam. Then from geometry,

r−→ = − ρ
−→

− c−→ + f
−→

(4.1)

Given a coordinate-free vector x−→, let its inertial derivative be denoted by
.
x−→, its derivative

with respect to the spacecraft body frame be denoted by
o
x−→, and its derivative with respect

to the rotating target body be denoted by
t
x−→. Then we have the following relationships,

ċ−→ =
o
c−→ + ω−→sc × c−→ = ω−→sc × c−→ (4.2)

ḟ
−→

=
t

f
−→

+ ω−→T × f
−→

= ω−→T × f
−→

(4.3)

where we have used the fact that c−→ is fixed in the spacecraft body (i.e.,
o
c−→ = 0), and f is

fixed in the target body (i.e.,
t

f
−→

= 0).
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Taking the inertial derivative of (4.1) and substituting (4.2)(4.3) yields,

ṙ−→ = − ρ̇
−→

− ċ−→ + ḟ
−→

(4.4)

= − ρ̇
−→

− ω−→sc × c−→ + ω−→T × f
−→

(4.5)

The physical Doppler measurement zv is precisely the component of the inertial velocity
vector ṙ−→ projected along a given beam direction d−→. This is obtained as the dot product of

d−→ with ṙ−→ obtained from (4.5) as follows,

zv = d−→ · ṙ−→ (4.6)

= − d−→ · ρ̇
−→

− d−→ · ( ω−→sc × c−→) + d−→ · ( ω−→T × f
−→

) (4.7)

This is the desired coordinate-free expression for the Doppler observable.

Now the variables zvi, ci, di, fi, ri, ṙi are specialized to be associated with the i’th beam,
and the following choices are made for the various coordinate frames,

ci, di, ωsc ∈ S/C body frame Fsc (4.8)

ri, ρ, ṙi, ρ̇ ∈ Inertial frame FI (4.9)

fi, ωT ∈ Target body frame FT (4.10)

where,

ri, ṙi - Position and velocity vectors from i’th Radar beam origin to its intersection point on
Target body, resolved in Inertial FI

fi - Position vector from Target body CM to i’th intersection point on Target body, resolved
in FT

ci - Position vector from Spacecraft CM to Radar beam origin, resolved in Fsc

di - Unit vector direction of i’th Radar beam, resolved in Fsc

A - 3 × 3 Spacecraft attitude as DCOS matrix, A = A(qsc)

T - 3 × 3 Target attitude as DCOS matrix, T = T (qT )

Using this notation, equation (4.7) can be specialized to give,

yvi = zvi + ni (4.11)

= −dT
i Aρ̇ − dT

i ω×
sc ci + dT

i AT T ω×
T fi + ni (4.12)
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where yvi is the velocity measurement associated with the i’th Doppler beam, and ni ∼
N(0, σ2

i ) has been included to denote additive measurement noise. Equation (4.12) is the
desired expression for the Doppler measurement yvi associated with the i’th radar beam.

In order to best incorporate (4.12) into the state estimator update, a pseudo-measurement
yi is defined as,

yi = yvi + dT
i ω×

sc ci − dT
i AT Tω×

T fi (4.13)

Then, by this construction,
yi = −dT

i Aρ̇ + ni (4.14)

which has the desired form of being linear in the state ρ̇.

The measurement (4.14) is noise-normalized as,

ỹi = yi/σi = −
dT

i Aρ̇

σi
+

ni

σi
(4.15)

= h̃T
i ρ̇ + ñi (4.16)

where,

h̃i = −
Adi

σi

; Cov[ñi] = 1 (4.17)

Consider m beams, i = 1, ..., m associated with a particular VMT update. Stacking the
normalized measurement (4.16) for each beam gives the stacked measurement equation,

Ystack = Hstack ρ̇ + nstack (4.18)

where,

Ystack =

⎡
⎢⎣ ỹ1

...
ỹm

⎤
⎥⎦ ; Hstack =

⎡
⎢⎣ h̃T

1

...

h̃T
m

⎤
⎥⎦ (4.19)

nstack =

⎡
⎢⎣ ñ1

...
ñm

⎤
⎥⎦ ; Cov[nstack] = I (4.20)

For m ≤ 3 equation (4.18) will be applied directly as a measurement update to the Kalman
filter. This will require the in-flight inversion of at most a 3 × 3 matrix. For m ≥ 4 a
pre-processing step based on QR factorization will be applied.

The pre-processing step uses a QR factorization to improve numerical robustness, and
also to ensure that only a 3 × 3 matrix needs to be inverted by the Kalman filter, even if
there are 4 or more beams. Specifically, a QR decomposition of Hstack is taken of the form,

Hstack = QR = [Q1, Q2]

[
R11

0

]
= Q1R11 (4.21)
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where R11 ∈ R3×3. Multiplying (4.18) on the left by QT and using (4.21) gives the equivalent
measurement equation,

QT Ystack =

[
R11

0

]
ρ̇ + QT nstack (4.22)

A key observation is that all but the top 3 equations of (4.22) are pure noise and can be
removed from consideration. Keeping only the top 3 equations of (4.22) gives,

y3 = R11 ρ̇ + n3 (4.23)

where,
y3 = QT

1 Ystack; n3 = QT
1 nstack (4.24)

R3 = Cov[n3] = I (4.25)

As with the RMT update, the algorithm checks the size of the diagonal elements of the
rows of R11 (an upper triangular matrix) to see whether 1, 2, or 3 of the measurements in
(4.23) should be applied for KF updating.

Given a full state vector x of the form,

x =

[
ρ
ρ̇

]
(4.26)

one can write ρ̇ as,
ρ̇ = [0, I]x (4.27)

Substituting (4.27) into (4.23) gives the final measurement equation of the form,

yvmt = Hvmtx + nvmt (4.28)

where,
Hvmt = [R11, I] (4.29)

As with the RMT update, we have intentionally postponed this last step to restrict the
number of columns of Hstack to only 3.

REMARK 4.1 [Single Frame Estimate for VMT ] A single-frame estimate of ρ̇ can be
defined from (4.23) by inverting the matrix R11 to give,

̂̇ρ = R−1
11 y3 (4.30)

Physically, R11 is invertible if 3 or more radar beams listed in the VMT are non-coincident.
Mathematically, R11 is upper triangular, so invertibility can be tested in-flight by considering
only its diagonal entries. Assuming R−1

11 exists, the estimate (4.30) has covariance,

Cov[̂̇ρ] = E[(ρ̇ − ̂̇ρ )(ρ̇ − ̂̇ρ )T ] = R−1
11 R−T

11 (4.31)

Note that this covariance is useful because it indicates how much information is contained
solely in the current VMT. Single frame estimates are important for debugging purposes,
performance monitoring, and real-time fault diagnosis and recovery.

13



5 ESTIMATION FRAMEWORK

5.1 Dynamics

A simple estimation framework is introduced for the purpose of demonstrating use of the
measurement updates developed earlier. The second-order dynamics of a spacecraft around
a target body can be written as,

ρ̈ = u + w̃ (5.1)

where u is exogenous,
u = 1(t) · am − ao

T + g(ro
T , ρo) (5.2)

and w̃ is random,
w̃ = 1(t) · wa + wsc − wT + wg (5.3)

Q̃
Δ
= Cov(w̃) = 1(t) · Qa + Qb (5.4)

Qa = Cov(wa)

Qb = Cov(wsc − wT + wg) (5.5)

where,

1(t)
Δ
=

{
1 if a thruster is firing
0 Otherwise

(5.6)

am - accelerometer measurement from the Inertial Measurement Unit (IMU) (m/s2) with
measurement error wa

wsc and wT - unmodeled specific accelerations on the spacecraft and target body, respectively

ao
T - nominal (known) specific acceleration of the Target Body

ρo and ro
T - nominal values of the relative position ρ and target position rT , respectively

g(·, ·) - gravity model used by the estimator

wg - unmodeled gravity effects

Equation (5.1) can be put into matrix form as,

ẋ = Ax + B̃u + Γ̃w̃ (5.7)

where,

x =

[
ρ
ρ̇

]
; A =

[
0 I
0 0

]
; B̃ =

[
0
I

]
; Γ̃ =

[
0
I

]
(5.8)
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Q̃
Δ
= Cov(w̃) = 1(t) · Qa + Qb (5.9)

As a last step, the state-space form (5.8) is discretized in time assuming that u(t) is piecewise
constant over T to give,

xk+1 = Fxk + Buk + wk (5.10)

where,

F = eAT =

[
I T · I
0 I

]
; B =

[
T 2

2
· I

T · I

]
(5.11)

Cov(wk)
Δ
= Qk =

[
T 3

3
Q̃ T 2

2
Q̃

T 2

2
Q̃ T · Q̃

]
(5.12)

5.2 Kalman Filter Time Update

The Kalman filter time-update for the model (5.10) is given as,

x̂k+1|k = F x̂k|k + Buk (5.13)

Mk+1 = FPkF
T + Qk (5.14)

5.3 Kalman Filter Measurement Update

Assume all relevant small-body measurements (e.g., RMT, VMT, etc.), are available in the
form,

yk = Hkxk + nk (5.15)

Cov[nk] = Rk (5.16)

The Kalman filter measurement-update for (5.15)(5.16) is given as,

x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1)

Kk = MkH
T
k

(
(1 + uw)HkMkH

T
k + Rk

)−1

(5.17)

Pk = (I − KkHk)Mk(I − KkHk)
T + KkRkK

T
k (5.18)

The option for using underweighting uw > 0 is inherited from the NASA Apollo program,
and intentionally slows adaptation in linearized estimators. Joseph’s form (5.18) ensures
covariances will be propagated correctly even when using underweighted (i.e., suboptimal)
gains.
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6 CASE STUDIES

A case study is presented to show the effective combination of using an altimeter measurement
with a camera measurement. Intuitively, the altimeter measures vertical information while
the camera measures horizontal information. Since camera measurements are in the form
of angles, the altimeter further supplies essential scale information. Consequently, the two
sensors work together in a synergistic fashion to cover all three dimensions of translational
motion.

The main camera measurement type is that of bearing angles to known landmarks. A
listing of such bearing angles with their associated landmark locations constitutes the land-
mark table (LMT) data type. The LMT data type has been treated elsewhere [1][2]. The
simulations in this section assume that the LMT measurement is comprised of only single
landmark which updates the filter at a rate of once per minute. The real-time throughput
needed for this low-rate LMT measurement is not expected to stress current spacecraft com-
puters. An accelerometer having a 20 micro-g bias is also integrated into the filter solution.
The altimeter measurement is assumed to be single beam, with a random error of 2 percent
of range.

The dimensions of the small body is 544 × 303 × 268 (m), and has a facet model with
242 facets shown in Figure 6.1. The navigation filter assumes that attitude information is
available from a separate attitude filter (e.g., driven by star-tracker and gyro measurements),
so does not carry extra states for attitude. A random attitude error of 10 arcseconds is
assumed in all simulations.

A simulated descent trajectory from 1.5 km to 10 meters altitude is shown in Figure 6.2.
The coordinates as a function of time are given in Figure 6.3. The coordinates of all plotted
variables are in a East-North-Up (ENU) landing frame whose origin is on the shape model
surface, located directly below the desired terminal altitude point. Position estimation errors
associated with using LMT measurements alone are shown in Figure 6.4. The benefit from
adding the altimeter measurement is shown in Figure 6.5. Here it is seen that the altimeter
causes position errors in all three axes to drop earlier in the descent, and to values that are
significantly smaller in magnitude than without using the altimeter. These same two plots
are shown zoomed after 1500 (s) in Figure 6.6 and Figure 6.7, respectively, to show this
comparison in more detail.

Velocity estimation errors associated with using LMT measurements alone are shown in
Figure 6.8. The benefit from adding an altimeter measurement is shown in Figure 6.9. The
altimeter causes velocity errors in all three axes to drop earlier in the descent, and to values
that are significantly smaller in magnitude than without using the altimeter. These same
two plots are shown zoomed after 1500 (s) in Figure 6.10 and Figure 6.11, respectively, to
show this comparison in more detail.

The synergy between the altimeter and camera is evidenced by the fact that the position
and velocity estimation errors drop significantly along all three axes, rather than just the
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vertical channel. Due to space limitations, simulations of the VMT measurement type are
not treated here, but can be found in [1].

Figure 6.1: Shape model with 242 facets used for small body altimetry simulation study
(km).
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Figure 6.2: 3D plot of spacecraft trajectory including groundtrack in x-y plane.
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Figure 6.3: Coordinates of spacecraft trajectory ((x=dash, y=dot, z=solid).
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Figure 6.4: LMT-only case: Position error
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Figure 6.5: LMT+RMT case: Position error.
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Figure 6.6: LMT-only case: Position error - zoomed.
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Figure 6.7: LMT+RMT case: Position error - zoomed.
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Figure 6.8: LMT-only case: Velocity error.
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Figure 6.9: LMT+RMT case: Velocity error.
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Figure 6.10: LMT-only case: Velocity error - zoomed.
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Figure 6.11: LMT+RMT case: Velocity error - zoomed.
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7 DISCUSSION

The altimeter and Doppler velocimeter measurement updates make use of the faceted shape
model in slightly different ways. While both require the calculation of the beam intersection
point of each sensor beam with the target body shape model (giving the intersection location
vector f), the RMT update requires knowing only the associated facet surface normal n and
facet constant κ, rather than f . In other words, the altimeter update requires knowing which
facet was intersected rather than the exact point of intersection. This should be contrasted
with the VMT update that requires knowledge of the intersection location f for each beam.
Intuitively, since the target body is rotating, the inertial velocity of the intersection point
(seen by the Doppler measurement), depends on its location f on the target body.

The current paper deals with a Doppler type velocity measurement. A velocity measure-
ment based on a time-of-flight type sensor is fundamentally different, and requires different
information from the facet model. More details can be found in [6].

Because the beam intersection points must be calculated in real time, the number of facets
retained in the facet model drives the complexity of the on-board computation. The case
study uses a shape model with 242 facets, and assumes an altimeter update every 1 second.
It is expected that these values can be accommodated by current spacecraft computers.

Generally speaking, the density of facets should be chosen commensurate with the rough-
ness of the terrain. However, a high density of facets is not required when the spacecraft is
far from the target body. For this reason, it may be desirable to carry different on-board
facet models for different phases of the mission. For close proximity operations, the density
of facets can be increased in areas where the altimeter is expected to be used. Aside from al-
timetry, the same facet models might be useful for calculating gravitational forces (assuming
constant material density).

If estimation error is large with respect to the physical size of the facets, it is possible
that the measurement updates will made using facet information from the wrong facet. This
effect has been simulated, and found to be small as long as the surface normals do not change
grossly in the vicinity of the beam. In this case, converging estimates eventually locate the
estimated beam on the correct facet. When terrain is rough, however, some care must be
taken to initialize the estimator with errors smaller than the average local facet size. The
initial convergence period can be robustified to some extent by using information obtained
by averaging neighboring facets. More work remains to quantify benefits from this approach.
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8 CONCLUSIONS

Methods are developed to systematically incorporate a multibeam altimeter and Doppler
velocimeter measurement into an on-board spacecraft state estimator by making use of in-
formation from a faceted shape model representation of the target body surface. The faceted
shape model representation is very general and does not place any restriction on the surface
complexity. This allows the estimation method to be applicable to a broad class of irregularly
shaped target bodies such as asteroids and comets.
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